
CS 182 Final Project: Computer Vision
Lily Bhattacharjee, Varun Dashora, Esha Madhekar

1 Introduction
1.1 Background
The CS 182 Computer Vision (CV) Project is an image classifi-
cation task based on the ImageNet dataset, involving identifying
objects in images from a subset of the data – TinyImageNet.
Spanning 200 classes of 500 64x64 RGB training images each,
the aim of the project is to accurately classify normal images
that resemble the training set and the 10,000 validation images
provided, while also optimizing performance on perturbed
images.

Despite being relatively low resolution (64x64), accurate
results on TinyImageNet are significant because new model
architectures may be generalized to real-world computer vision
challenges. Because the images and the dataset themselves
are relatively small and thus require less time to train, but
at the same time internally complex and more difficult to
overfit than MNIST or CIFAR-10, applications of deep neural
networks in this context can range from self-driving cars to
smart warehouses, automating the human eye’s process of
deriving multidimensional data from a scene. Implementing
a model with high validation and test accuracy robust to
naturally-occurring perturbations in object orientation, size,
etc. can offer insight into overfitting-resistant layer orders and
operations.

1.2 Model Comparison Metrics
To evaluate models relatively by effectiveness, we observed the
following factors:

• Number of epochs to attain a benchmark training accuracy
(≈ 30%), rate of increase over epochs

• Peak validation accuracy (before overfitting)
• Execution time per epoch, prioritizing efficient models
• Performance on model-specific adversarial dataset

1.3 Summary of Results
Our optimal model was a mode ensemble of 20 GhostNets, each
trained on the entire training set, and a subset of an adversar-
ial set generated by Fast Gradient Sign Method. This resulted in
the highest overall validation (64.39%) and adversarial (77.63%)
image accuracy. Our hypothesis, which involved replacing por-
tions of existing ResNet-50 and Dual Path Network architectures
with Ghost modules, a plug-and-play cell meant to introduce re-
dundancy in convolutions without losing significant image in-
formation (see section 3.3 for more background), didn’t perform
as well as expected, and these trained models were not included
in the final submission.

2 Literature Survey/Related Work
Previous work in developing architecture tailored to analyzing
2D images, specifically in ImageNet competition submis-
sions, has included ResNets, Dual Path Networks (DPN), and
GhostNets. Deep networks commonly encounter the vanishing
gradient problem (VGP): some gradient elements become
exponentially small, slowing or halting parameter updates and
the network’s learning. This occurs because partial derivatives
in the backpropagation algorithm are calculated with the chain
rule, making it more likely that small weights shrink further

as the number of layers increases (He et al., 2015). Early
contributions to the ImageNet challenge, including AlexNet
and VGG – while revolutionary at the time – are no longer
considered state-of-the-art because the VGP limits model depth
and thereby information capacity (He et al., 2015).

ResNets, which introduced skip connections, allow net-
works to learn residual functions based on the layer inputs,
rather than the sequential series of linearities and nonlinearities
of simple feed-forward network (He et al., 2015). DPNs build
on this advance by proposing a hybrid design that combines
the benefits of ResNets and DenseNets to reuse and explore
new features, allowing good representations to be learned more
quickly on shallower DPNs (Chen et al., 2017).

GhostNets were designed out of a necessity for efficient
architectures with competitive accuracies on ImageNet (Han
et al., 2020). ResNet-50, a common baseline model for the
dataset, encompasses ≈ 25.6M parameters, and requires a
large amount of computing power to train until convergence,
and to output results for a batch of inputs (Han et al., 2020).
Because some CV applications, such as self-driving, require fast
real-time feedback, suggested improvements such as pruning
unimportant weights, weight and activation quantization, and
knowledge distillation led to performance upper-bounded by the
unmodified network’s accuracy (Han et al., 2020). GhostNets
mitigate this issue by generating more features per layer, using
fewer necessary parameters, which decreases computational
complexity by introducing map redundancy (Han et al., 2020).

3 Background

3.1 ResNets

The main concept underlying ResNet success is the architecture-
agnostic residual connection. Assuming that H(x) is the learned
representation of a few layers in a ResNet, the layers should
equivalently be able to learn the residual function H(x) − x,
a linear combination of the inputs and the previous nonlinear
transformation (He et al., 2015). Instead of allowing sequences
of layers to learn H(x), ResNet layers learn F (x) = H(x)− x.
Introducing a skip connection between the first and last layers
of the block such that the input is propagated to the end allows
the network to recover the same output H(x) = H(x)− x+ x,
although learning in the new structure is easier to optimize (He
et al., 2015).

Deep networks without skip connections encounter a degra-
dation problem, in which increasing depth initially leads to
increasing accuracy that saturates and then decreases, because
later layers might be best represented by identity functions
that are difficult to learn by fitting a stack of layers rather than
overfitting (He et al., 2015). Optimally, in a residual model, it
is easier to learn a residual of 0, allowing the input to the first
block layer to take a shortcut to the last (He et al., 2015).

3.2 Dual Path Networks

The DPN improves on the residual path (element-wise addition
of input features to the output of a block) developed by ResNet
and the densely-connected path (input and output feature con-
catenation) suggested by the DenseNet architecture, which in-



dependently produced state-of-the-art ImageNet accuracy (Chen
et al., 2017). DPNs are designed to exploit the benefits of both
– feature reuse and exploration – while requiring fewer parame-
ters and computational resources (Chen et al., 2017). DPNs are
composed of micro-blocks: 1x1 conv, 3x3 conv, 1x1 conv (Chen
et al., 2017). The output of the block is linked to two paths, with
one part element-wise added to the residual connection while the
other part is concatenated with the input feature maps (Chen et
al., 2017). Because the overall architecture of the DPN is very
similar to a ResNet, the densely-connected paths can be added
on as slice and concatenate layers without measurable computa-
tional or memory cost.

3.3 GhostNets

Figure 1: Ghost bottleneck ar-
chitecture

The basic unit of a GhostNet
is the Ghost module, which
takes advantage of the exist-
ing feature map redundancy
in CNN layers to reduce
convolutional filter resource
usage (Han et al., 2020). A
convolutional layer for input
X ∈ Rc×h×w can be writ-
ten as Y = X ∗ f + b where
f is the filter ∈ Rc×k×k×n

(Han et al., 2020). As the
filters and channel sizes
increase in deeper networks,
the number of floating
point operations needed
explodes (Han et al., 2020).

Because of pixel overlap in adjacent convolutional operations,
output feature maps can be very similar, and represented as a
combination of some intrinsic feature maps and their "ghosts"
(Han et al., 2020).

In a Ghost module, m (controlled by hyperparameter s)
feature maps can be created using a smaller convolution
Y ′ = X ∗ f ′, f ∈ Rc×k×k×m, which reduces the number of
FLOPs to m × h′ × w′ × c × k × k (h′ and w′ are output
dimensions), a quantity that grows much more slowly than n
(Han et al., 2020). The remaining n−m feature maps to obtain
an output with the correct dimensions, can be generated with
cheap linear operations on the m intrinsic maps (Han et al.,
2020).

3.4 Project Improvements

The GhostNet, composed of serial Ghost modules, is hypothe-
sized to have generalized improved results. Although the Ghost-
Net architecture suggested is only based on MobileNet’s struc-
ture, the general idea of replacing convolutional blocks with
Ghost modules of the same size should theoretically produce
comparable accuracies with cheaper computations. By exploit-
ing convolutional layer redundancy and introducing the Ghost
module’s cheap operations to approximate the similarity without
explicitly calculating all convolution output values, we hypoth-
esized that the modified networks would take fewer epochs to
train and converge, without a significant decrease in accuracy.
In this project, we explore the performance of ResNet-50 and
DPN-68 after integrating Ghost modules into the following lay-
ers:
ResNet-50

• all 3 bottlenecks in layer 1’s feed-forward sequence
• all (3 + 4 + 6 + 3 = 16) bottlenecks in all 5 layers

DPN-68
• all 4 stride-1 convolutions in dual path block 1
• all 49 stride-1 convolutions in all 5 dual path blocks

3.5 Adversarial Data Augmentation
Other than preliminary data transforms, including randomly jit-
ter of colors and hues, axial flips, rotations, arbitrary grayscale,
and affine transformations (e.g. shears), we considered im-
proving model robustness to adversarial inputs by generating
auxiliary datasets with Generative Adversarial Networks
(GANs). A GAN can be used to create more images of a
specific class or mix of classes, and is composed of a generator
and a discriminator.

In our use case, the discriminator takes image-integer pairs as
inputs, with each image classified as fake or real – from the
input dataset – while the generator attempts to create images
that minimize loss over the course of a zero-sum game. After
training the GAN for 90 epochs, the produced images were
noisy and indistinguishable, likely due to the GAN instability
with low-resolution images, and thus weren’t used in training
the final models. Implementing the fast gradient sign method

Figure 2: Green
frog output

Figure 3: Red
frog output

Figure 4: Visi-
ble frog eyes in
output

(FGSM) generated a usable set of adversarial images. FGSM, as
a white box attack, uses the target network’s gradients to create
an image that maximizes loss while introducing perturbations
small enough to fool a trained model with static parameters, as
shown in Figure 5. After training the final ensemble models
on clean images, the model states were used to create 3,200
images each, and new models of the same architecture were
re-trained with mini-batches of 5 adversarial inputs per iteration.

4 Methods and Results
4.1 Baseline: ResNet-50
Our baseline model was a ResNet-50 pretrained on ImageNet.
The only modification made was altering the number of classes
in the final layer to 200 instead of ImageNet’s full 1,000. Start-
ing with the pretrained weights, we trained the model further
on TinyImageNet images. The reason the network was slow
to train, only reaching 30% accuracy after 1 epoch, is likely
because the original weights were fine-tuned to ImageNet’s
224x224-sized images, which have higher resolution. The train-
ing accuracy appears to logarithmically increase and taper over

Figure 5: FGSM procedure example on panda



Figure 6: In contrast to the GAN outputs, FGSM outputs vi-
sually resemble clean inputs, even though none of the images
would be classified as "frog" by the target model (DPN, Ghost-
Net, EfficientNet, ResNext-WSL respectively).

as the number of batches increases. ResNet accuracy has empir-
ically been observed to rise fastest during the first few epochs;
even though the model parameters can take many epochs to con-
verge completely, the accuracy does not change significantly
(He et al., 2015). As seen in Figure 8, beyond the first epoch,

Figure 7: ResNet-50 Training Accuracy Over 1 Epoch

ResNet-50’s training accuracy doesn’t increase monotonically,
instead spiking up briefly in the first few batches and decreas-
ing steadily from there. This behavior can be explained by the
initial batches in the first epoch contributing the most to setting
the weights, while later batches have a smaller effect due to the
combined impact of all of the preceding batches. The resulting
model best fits images with features similar to the first batches,
which indicates the utility of ensemble models, in which the
best-fitting batches will be selected randomly, allowing for bet-
ter coverage of the dataset than a single model.

Figure 8: ResNet-50 Training Accuracy, 5 Epochs

4.2 Model Evolution

The next models trained included (1) a ResNet-50 in which the
first layer of the network included bottlenecks that were replaced
with Ghost bottlenecks (Ghost-1-ResNet-50), (2) a ResNet-50

with all bottlenecks replaced with Ghost bottlenecks (Ghost-All-
ResNet-50), (3) a pretrained DPN-68, and (4) a DPN-68 with all
convolutional blocks replaced by Ghost bottlenecks (Ghost-All-
DPN-68), as described in Section 3.4. From Figure 10, Ghost-1-
ResNet-50, Ghost-All-ResNet-50, and Ghost-All-DPN-68 per-
formed very similarly to each other, reaching 4-5% training ac-
curacy over 1 epoch and continuing to linearly increase to an
asymptote of ≈ 25− 30%.

Figure 9: Ghost-All-ResNet-50 Training Accuracy, 1 Epoch

Figure 10: Ghost-All-DPN-68 Training Accuracy, 1 Epoch

As Figure 11 shows, after around 16-20 epochs, like Ghost-
All-DPN-68, all 4 models began to overfit, as training accuracy
continued to increase slowly, reaching 60-70%, while validation
accuracy began to fluctuate at around 40%. This was far below
the reported state-of-the-art performance of even the regular
pretrained models, which was surprising. Because we initially
weren’t aware that the validation images were indistinguishable
distribution-wise from the training set, we attributed lower than
expected accuracy to either lack of robustness to adversarial
images, hypothesizing the weight optimization had fallen into
a local minimum that an adjustable learning rate would help
by converging to a global minimum more quickly, or the low
resolution of TinyImageNet images, which would make it more
difficult to extract features. For the last reason, we assumed for
an extended period that higher accuracy wouldn’t be possible
given the lower content of information in the data. Additionally,
after realizing that transforms weren’t being applied evenly
between training and validation sets, and fixing this bumped
Ghost-All-DPN-68’s peak accuracy up to 50.04%. Noticing that



Figure 11: Ghost-All-DPN-68 Training Accuracy Over 16
Epochs

models were performing similarly well (≈ 50− 60% accuracy),
we created ensemble models to mitigate each individual model’s
blind spots and reach a consensus output for each image. We
experimented with mode, mean, and weighted mean-style (in
which all models were trained together, with weights evolving
according to how often their predictions were correct on training
data, similar to AdaBoost) ensembles, and the former was most
successful. Expectedly, mean and weighted mean ensembles
don’t make much sense to implement on categorical data
e.g. votes for class 68, 66, and 64 should not be averaged to
66, which explained the resulting low validation accuracies
(4.258% for weighted mean). A weighted mode average ended
up reducing to the contributions of a few models only for
all inputs, and resulting in 60.90% validation accuracy, not
significantly different from the mode ensemble with an accuracy
of 56.08%.

Ensemble 1 represents a model that calculates the mode
of the outputs for each component model. Ensemble 2 performs
the same consensus operation while considering a set of
high-accuracy models and performing an additional resizing
operation to transform 64x64 images to 224x224 and inter-
polating in bicubic mode. We started with partially trained
component models for architectures that were slow to converge.
The performance of Ensemble 1 is worse than the highest per-
forming model (GhostNet-Free) as a result of the high variance
in validation accuracies, but because Ensemble 2’s models are
closer in training and validation accuracy, Ensemble 2 outper-
forms EfficientNet. We noticed models in a mode ensemble
needed to glean different features from the images to be diverse
enough to improve validation when grouped together (fulfilled
by varying architectures), but also well-trained so as not to
introduce noise or inaccurate predictions into the consensus.
Note that the difference between GhostNet and GhostNet-Free
is that all parameters were free to compute gradients in the
latter. Ensemble 1’s and 2’s validation accuracies were 56.08%
and 72.75% respectively.

4.3 Final Model
Regular GhostNet and EfficientNet without modifications took
the fastest time to train, and – as theoretically expected –
reached higher accuracies within fewer epochs. Honing in on
GhostNet, our final model involved training baseline DPN-68,
EfficientNet, GhostNet, and ResNext-WSL for 2-3 epochs to

Model Training
DPN-68 52.1%

ResNext-WSL 35.17%
Ghost-All-DPN-68 50.04%

DenseNet 6.91%
GhostNet 24.11%
ResNet-50 35.6%

GhostNet-Free 64.74%

Table 1: Ensemble 1 Individual Model Performances

Model Training Validation
DPN-68 64.24% 52.19%
GhostNet 78.99% 65.52%

EfficientNet 79.50% 70.06%
ResNext-WSL 57.98% 62.37%

Table 2: Ensemble 2 Individual Model Performances

reach 60%+ training accuracy, and then using FGSM to generate
3,200 targeted adversarial images per model.

Our submission is an ensemble of 20 GhostNets, where
each GhostNet i is a mode ’expert’ on the entire training dataset
and adversarial images corresponding to classes 10 ∗ (i − 1)
to 10i. Individual GhostNet component models were much
faster to train than the alternatives, taking around 30 min /
epoch, and experts could be trained in parallel. Each GhostNet
obtained ≈ 59 − 60% training and ≈ 55% validation accuracy,
and the final ensemble reached 64.39% validation and 77.63%
adversarial image accuracy.

5 Conclusion

After exploring the possibility of inserting GhostNet modules
into selected bottlenecks and convolutions in existing state-of-
the-art models like ResNet-50 and DPN-68, it was surprising
to discover that these cells do not contribute significantly to
information capacity and performance seems upper-bounded by
the original architecture. It is likely that Ghost modules worked
well with MobileNetV3 because this architecture already
includes expansion and reduction blocks similar to the structure
of the first variant of the Ghost bottleneck. Additionally, be-
cause Ghost modules lose image features by introducing cheap
operations, they’re likely to work best on large, high-resolution
images. Even after resizing the images to 224x224 ImageNet
size with interpolation, lower accuracy can be attributed to
increased information loss as deeper layers are replaced with
Ghost layers.

Our final submission is based on a discovery about the ro-
bustness of ensemble models: to balance the tradeoff between
clean and adversarial image accuracy, it may be a good idea
to train each component model on a set of combined majority
clean and minority noisy images. This makes each model very
good at classifying unperturbed validation images because the
adversarial images are not a large part of the training set, while
the other models which are each trained on a small segment
of adversarial images compensate for that, each becoming
an ’expert’ on a certain set of classes. Taking the mode of
the model outputs mitigates overfitting and model variance,
allowing the ensemble to perform better than its best model.



6 Team Contributions
Lily Bhattacharjee

• trained the following models and generated visualizations
for accuracy over epochs: Dual Path Network, ResNext-
WSL, EfficientNet, GhostNet, ResNet-50, VGG-16, En-
sembles 1 & 2

• explored the possibility of using ghost cells to increase
model information capacity

• wrote almost all of the classification-related code to process
training and validation images to create torch datasets, exe-
cute the training loop, save intermediate model states after
each epoch, support ensemble models composed of differ-
ent architectures

• built on Varun’s adversarial image generation code to create
a set of 3,200 perturbed images per model

• trained the final ensemble (mode of 20 GhostNets) model
submission

• set up the folder structure, code and README for the final
submission, including modifications to test_submission.py

Varun Dashora
• implemented the FGSM algorithm and generated 1,536 (no

class labels) and 200 (with class labels) adversarial inputs,
1 for each TinyImageNet class

• explored other methods of adversarial image generation, in-
cluding GANs and corruptions from ImageNet-C

• significant work on GANs – attempted at least 20 different
architectures

Esha Madhekar
• significant work on modifying InceptionNet-V3 dimen-

sions and architecture
• trained the following models: InceptionNet-V3 (not in-

cluded over model evolution due to image sizing issues),
DenseNet, ResNext-WSL

• explored training ResNext-WSL with ghost cells,
DenseNet & GoogleLeNet combination (similar to
InceptionNet)

Effort distribution: 45% (Lily)-30% (Varun)-25% (Esha)

7 Acknowledgments
We would like to acknowledge our use of the following pre-
trained models, which were retrained on TinyImageNet data:

• ResNet-50
• DPN-68
• GhostNet
• EfficientNet
• VGG-16
• DenseNet-161
• ResNext-WSL
• InceptionNetV3

Also integral to the success of this project was GhostNet code
and model architecture from the following link (repository:
ghostnet.pytorch, author: d-li14).

8 Bibliography
Hendrycks, D., Mu, N., Cubuk, E., Zoph, B., Gilmer, J., & Lak-
shminarayanan, B. (2020). AugMix: A Simple Data Processing
Method to Improve Robustness and Uncertainty. Proceedings
of the International Conference on Learning Representations
(ICLR).

Ian J. Goodfellow, Jonathon Shlens, & Christian Szegedy.
(2015). Explaining and Harnessing Adversarial Examples.

Kai Han, Yunhe Wang, Qi Tian, Jianyuan Guo, Chunjing
Xu, & Chang Xu. (2020). GhostNet: More Features from
Cheap Operations.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun.
(2015). Deep Residual Learning for Image Recognition.

Yunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin, Shuicheng
Yan, & Jiashi Feng. (2017). Dual Path Networks.

https://github.com/d-li14/ghostnet.pytorch

	Introduction
	Background
	Model Comparison Metrics
	Summary of Results

	Literature Survey/Related Work
	Background
	ResNets
	Dual Path Networks
	GhostNets
	Project Improvements
	Adversarial Data Augmentation

	Methods and Results
	Baseline: ResNet-50
	Model Evolution
	Final Model

	Conclusion
	Team Contributions
	Acknowledgments
	Bibliography

